Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

6,6'-Dichloro-3,3'-(butane-1,4-diyldioxy)diflavone

S. Thinagar, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a* }}$
S. C. Gupta, ${ }^{\text {b }}$ H. Merazig ${ }^{\text {c }}$ and S. Bouacida ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, ${ }^{\text {b }}$ Department of Chemistry,
Kurukshetra University, Haryana, India, and
${ }^{\text {c }}$ Department of Chemistry, Mentouri University, Constantaine 25000, Algeria

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.056$
$w R$ factor $=0.159$
Data-to-parameter ratio $=10.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Molecules of the title compound, $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{6}$, lie across crystallographic inversion centres. The flavone moiety is slightly folded, with the benzene and dihydropyrone rings making a dihedral angle of $2.5(2)^{\circ}$. In the crystal, the molecules exist as cyclic intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogenbonded dimers. The structure is further stabilized by van der Waals interactions.

Comment

Benzopyran derivatives are anti-inflammatory and antiallergic, and are used to treat elephantiasis. These compounds are capable of inducing alteration in DNA structure and replication. Flavonoids exhibit antidiabetic (Hii \& Howell, 1985; Basnet et al., 1993; Ragunathan \& Sulochana, 1994) and aldose reductase inhibitory activities (Varma \& Kinoshita, 1976; Okuda et al., 1984; Aida et al., 1990). Chromanone compounds are used to treat angina pectoris (Hasegaida, 1967) and these compounds show vasodilating activity on the coronary vascular bed (Nagao et al., 1972). Diethyl 2,6-dimethyl-4-(2-phenyl-4-oxo-4H-1-benzopyran-6-yl)-1,4-di-hydropyridine-3,5-dicarboxylate, containing a 2 -phenyl- 4 H -benzopyran-4-one (flavone), is known to have a coronary dilatory effect (Itz \& Potzsch, 1963) and capillary resistance activity (Gabor, 1981).

(I)

The asymmetric unit of the title compound, (I), consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre at $(1-x, 1-y, 1-z)$. The geometry of the benzopyran moiety is comparable with those observed in related structures (Thinagar et al., 2000; Bruno et al., 2001; Özbey et al., 1999). The bond angles around C2 of the heterocyclic ring vary from 113.1 (7) to $123.6(7)^{\circ}$, indicating significant deviation from the ideal value. The $\mathrm{O} 2-\mathrm{C} 9-$ C10-C15 torsion angle $\left[141.8(7)^{\circ}\right]$ shows a +anticlinal conformation of the phenyl ring with respect to the flavone moiety. The $\mathrm{O} 3-\mathrm{C} 16$ bond is in a trans orientation with respect to the flavone moiety, as is evidenced by the $\mathrm{C} 1-\mathrm{O} 3-$ $\mathrm{C} 16-\mathrm{C} 17$ torsion angle of 172.4 (6) ${ }^{\circ}$. The pyran ring is planar within 0.032 (8) \AA, compared to the usual half-chair conformation (Alex et al., 1993). However, the flavone moiety is not strictly planar, as the benzene and dihydropyrone rings form a dihedral angle of $2.5(2)^{\circ}$. The O atom of the keto group

Received 23 October 2002 Accepted 21 November 2002 Online 30 November 2002

Figure 1
A view of the title molecule, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Only the contents of the asymmetric unit are numbered.
deviates from the flavone moiety by -0.084 (5). The dihedral angle between the planes of the flavone moiety and the phenyl ring is $42.5(3)^{\circ}$.

The molecular structure of (I) is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and the crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular hydrogen bonds (Table 2). The intramolecular $\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 1$ hydrogen bond is involved in $R_{1}{ }^{1}(5)$ ring formation. In the crystal, an intermolecular $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cl}(-x, 1-y,-z)$ hydrogen bond is involved in cyclic dimer formation, with an $R_{2}{ }^{2}(8)$ ring descriptor (Bernstein et al., 1995).

Experimental

A suspension of 6-chloro-3-hydroxy-2-(2-furyl)-4-oxo-4H-1-benzopyran $(1 \mathrm{~g}, 0.0038 \mathrm{~mol}), 1,4$-dibromobutane $(0.0019 \mathrm{~mol})$, tetra- n butylammonium iodide $(1 \mathrm{~g})$ and freshly ignited $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ was refluxed in dry acetone $(30 \mathrm{ml})$ for 4 h . The colour of the reaction mixture changed from yellow to colourless. The reaction mixture, after filtration and distillation of acetone, was poured into cold water to obtain a mixture of the monochromone and bischromone. This was then crystallized from acetone to obtain pure bischromone.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{6}$
$M_{r}=599.43$
Triclinic, $P \overline{1}$
$a=5.335(9) \AA$
$b=9.242(8) \AA$
$c=13.969(9) \AA$
$\alpha=89.27(1)^{\circ}$
$\beta=82.68(1)^{\circ}$
$\gamma=86.47(1)^{\circ}$
$V=681.8(14) \AA^{\circ}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.460 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=2-22^{\circ} \\
& \mu=0.29 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.30 \times 0.29 \times 0.27 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4

 diffractometer $w / 2 \theta$ scans2312 measured reflections
2056 independent reflections 685 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.122$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.159$
$S=0.91$
2056 reflections
191 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0553 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.018 (4)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{O} 1-\mathrm{C} 2$	$1.220(7)$	$\mathrm{O} 3-\mathrm{C} 16$	$1.470(7)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.378(7)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.484(8)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.388(7)$	$\mathrm{C} 17-\mathrm{C} 17^{\mathrm{i}}$	$1.541(13)$
$\mathrm{O} 3-\mathrm{C} 1$	$1.358(7)$		
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.6(7)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	$116.3(7)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$123.2(7)$	$\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10$	$127.5(6)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$113.1(7)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$	$111.9(6)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$	$116.6(7)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 11$	$117.0(7)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$122.4(7)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 9$	$122.6(7)$
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$123.1(7)$		
$\mathrm{C} 16-\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	$-69.2(8)$	$\mathrm{C} 1-\mathrm{O} 3-\mathrm{C} 16-\mathrm{C} 17$	$172.4(6)$
$\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15$	$-45.6(12)$	$\mathrm{O} 3-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 17^{\mathrm{i}}$	$-61.0(10)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-36.3(10)$		

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 1$	0.97	2.51	$3.091(10)$	118
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.93	2.76	$3.688(10)$	174

Symmetry code: (ii) $-x, 1-y,-z$.
All H atoms were fixed geometrically and allowed to ride on the corresponding C atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.97 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The large $R_{\text {int }}$ value (0.122) and low ratio of observed to unique reflections (0.33), are a result of the poor diffraction quality of the crystal. The intensity data collection was restricted to $\theta_{\text {max }}$ of 23.7°, as the reflections were found to be rather weak at higher angles.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

ST and DV thank UGC (India) for providing financial assistance under a major research project.

References

Aida, K., Tawatta, M., Shindo, S., Onaya, T., Sasaki, H., Yamaguchi, T., Chin, M. \& Mitsuhasi, H. (1990). Planta Med. 56, 254-258.

Alex, G., Srinivasan, S., Krishnasamy, V., Suresh, R. V., Iyer, R. \& Iyer, P. R. (1993). Acta Cryst. C49, 70-73.

Basnet, P., Kadota, S., Shimizu, M., Xu, H. X. \& Namba, T. (1993). Chem. Pharm. Bull. 41, 1790-1795.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruno, G., Nicolo, F., Rotondo, A., Foti, F., Risitano, F., Grassi, G. \& Bilardo, C. (2001). Acta Cryst. C57, 493-494.

Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.
Gabor, M. (1981). Arzneim Forsch. (Drug Res.) 31, 442-445.
Harms, K. \& Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
Hasegaida, G. (1967). Japanese Patent 67/24588; Chem. Abstr. (1968), 69, 67221.

Hii, C. S. T. \& Howell, S. L. (1985). J. Endocrinol. 107, 1-8.
Itz, R. E. \& Potzsch, E. (1963). Arzneim Forsch. (Drug Res.) 41, 705-709.
Nagao, T., Wishio, S., Kato, H. \& Takagi, K. (1972). Chem. Pharm. Bull. (Tokyo), 20, 82.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Okuda, J., Miwa, I., Inagaki, K., Horie, T. \& Nakayama, M. (1984). Chem. Pharm. Bull. 32, 767-772.
Özbey, S., Kendi, E., Ayhan, G. K. \& Ertan, R. (1999). Acta Cryst. C55, 678680.

Ragunathan, V. \& Sulochana, N. (1994). J. Indian Chem. Soc. 71, 705-706. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34
Thinagar, S., Velmurugan, D., Amalraj, A. \& Raghunathan, R. (2000). Cryst. Res. Technol. 35, 979-986.
Varma, S. D. \& Kinoshita, J. H. (1976). Biochem. Pharmacol. 25, 2502-2513.

