Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Thinagar,^a D. Velmurugan,^a* S. C. Gupta,^b H. Merazig^c and S. Bouacida^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, ^bDepartment of Chemistry, Kurukshetra University, Haryana, India, and ^cDepartment of Chemistry, Mentouri University, Constantaine 25000, Algeria

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.011 Å R factor = 0.056 wR factor = 0.159 Data-to-parameter ratio = 10.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 6,6'-Dichloro-3,3'-(butane-1,4-diyldioxy)diflavone

Molecules of the title compound, $C_{34}H_{24}Cl_2O_6$, lie across crystallographic inversion centres. The flavone moiety is slightly folded, with the benzene and dihydropyrone rings making a dihedral angle of 2.5 (2)°. In the crystal, the molecules exist as cyclic intermolecular $C-H\cdots Cl$ hydrogenbonded dimers. The structure is further stabilized by van der Waals interactions.

Received 23 October 2002 Accepted 21 November 2002 Online 30 November 2002

Comment

Benzopyran derivatives are anti-inflammatory and antiallergic, and are used to treat elephantiasis. These compounds are capable of inducing alteration in DNA structure and replication. Flavonoids exhibit antidiabetic (Hii & Howell, 1985; Basnet *et al.*, 1993; Ragunathan & Sulochana, 1994) and aldose reductase inhibitory activities (Varma & Kinoshita, 1976; Okuda *et al.*, 1984; Aida *et al.*, 1990). Chromanone compounds are used to treat angina pectoris (Hasegaida, 1967) and these compounds show vasodilating activity on the coronary vascular bed (Nagao *et al.*, 1972). Diethyl 2,6dimethyl-4-(2-phenyl-4-oxo-4H-1-benzopyran-6-yl)-1,4-dihydropyridine-3,5-dicarboxylate, containing a 2-phenyl-4Hbenzopyran-4-one (flavone), is known to have a coronary dilatory effect (Itz & Potzsch, 1963) and capillary resistance activity (Gabor, 1981).

The asymmetric unit of the title compound, (I), consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre at (1 - x, 1 - y, 1 - z). The geometry of the benzopyran moiety is comparable with those observed in related structures (Thinagar et al., 2000; Bruno et al., 2001; Özbey et al., 1999). The bond angles around C2 of the heterocyclic ring vary from 113.1 (7) to 123.6 (7) $^{\circ}$, indicating significant deviation from the ideal value. The O2-C9-C10-C15 torsion angle $[141.8 (7)^{\circ}]$ shows a +anticlinal conformation of the phenyl ring with respect to the flavone moiety. The O3-C16 bond is in a trans orientation with respect to the flavone moiety, as is evidenced by the C1-O3-C16-C17 torsion angle of 172.4 (6)°. The pyran ring is planar within 0.032 (8) Å, compared to the usual half-chair conformation (Alex et al., 1993). However, the flavone moiety is not strictly planar, as the benzene and dihydropyrone rings form a dihedral angle of 2.5 (2) $^{\circ}$. The O atom of the keto group

Printed in Great Britain - all rights reserved

© 2002 International Union of Crystallography

Figure 1

A view of the title molecule, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Only the contents of the asymmetric unit are numbered.

deviates from the flavone moiety by -0.084 (5). The dihedral angle between the planes of the flavone moiety and the phenyl ring is $42.5 (3)^{\circ}$.

The molecular structure of (I) is stabilized by intramolecular $C-H \cdots O$ hydrogen bonds and the crystal packing is stabilized by C-H···Cl intermolecular hydrogen bonds (Table 2). The intramolecular $C16-H16A\cdots O1$ hydrogen bond is involved in $R_1^{(1)}(5)$ ring formation. In the crystal, an intermolecular C4–H4···Cl(-x, 1 - y, -z) hydrogen bond is involved in cyclic dimer formation, with an $R_2^{(2)}(8)$ ring descriptor (Bernstein et al., 1995).

Experimental

A suspension of 6-chloro-3-hydroxy-2-(2-furyl)-4-oxo-4H-1-benzopyran (1 g, 0.0038 mol), 1,4-dibromobutane (0.0019 mol), tetra-nbutylammonium iodide (1 g) and freshly ignited K₂CO₃ (1 g) was refluxed in dry acetone (30 ml) for 4 h. The colour of the reaction mixture changed from yellow to colourless. The reaction mixture, after filtration and distillation of acetone, was poured into cold water to obtain a mixture of the monochromone and bischromone. This was then crystallized from acetone to obtain pure bischromone.

Crystal data

$C_{34}H_{24}Cl_2O_6$	Z = 1
$M_r = 599.43$	$D_x = 1.460 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 5.335 (9) Å	Cell parameters from 25
b = 9.242 (8) Å	reflections
c = 13.969(9) Å	$\theta = 2-22^{\circ}$
$\alpha = 89.27 (1)^{\circ}$	$\mu = 0.29 \text{ mm}^{-1}$
$\beta = 82.68 (1)^{\circ}$	T = 293 (2) K
$\gamma = 86.47 (1)^{\circ}$	Block, colourless
$V = 681.8 (14) \text{ Å}^3$	$0.30\times0.29\times0.27$ mm
Data collection	
Enraf-Nonius CAD-4	$\theta_{\rm max} = 23.7^{\circ}$
diffractometer	$h = -6 \rightarrow 0$
$w/2\theta$ scans	$k = -10 \rightarrow 10$
2312 measured reflections	$l = -15 \rightarrow 15$
2056 independent reflections	3 standard reflections
685 reflections with $I > 2\sigma(I)$	every 100 reflections

intensity decay: none

 $R_{\rm int} = 0.122$

Refinement

и S 2 1 ŀ

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0553P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.159$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.91	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
2056 reflections	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
191 parameters	Extinction correction: SHELXL9
H-atom parameters constrained	Extinction coefficient: 0.018 (4)

Table 1

Selected geometric parameters (Å, °).

01-C2 02-C8 02-C9 03-C1	1.220 (7) 1.378 (7) 1.388 (7) 1.358 (7)	O3-C16 C16-C17 $C17-C17^{i}$	1.470 (7) 1.484 (8) 1.541 (13)
01-C2-C3 01-C2-C1 C3-C2-C1 C8-C3-C4 C8-C3-C4 C8-C3-C2 C3-C8-C7	123.6 (7) 123.2 (7) 113.1 (7) 116.6 (7) 122.4 (7) 123.1 (7)	$\begin{array}{c} 02-C8-C7\\ C1-C9-C10\\ 02-C9-C10\\ C15-C10-C11\\ C15-C10-C9\\ \end{array}$	116.3 (7) 127.5 (6) 111.9 (6) 117.0 (7) 122.6 (7)
C16-O3-C1-C2 C1-C9-C10-C15 O2-C9-C10-C11	-69.2 (8) -45.6 (12) -36.3 (10)	C1-O3-C16-C17 $O3-C16-C17-C17^{i}$	172.4 (6) -61.0 (10)

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C16-H16A····O1	0.97	2.51	3.091 (10)	118
C4-H4···Cl1 ⁱⁱ	0.93	2.76	3.688 (10)	174

Symmetry code: (ii) -x, 1 - y, -z.

All H atoms were fixed geometrically and allowed to ride on the corresponding C atoms, with C-H distances of 0.93 or 0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$. The large R_{int} value (0.122) and low ratio of observed to unique reflections (0.33), are a result of the poor diffraction quality of the crystal. The intensity data collection was restricted to $\theta_{\rm max}$ of 23.7°, as the reflections were found to be rather weak at higher angles.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

ST and DV thank UGC (India) for providing financial assistance under a major research project.

References

- Aida, K., Tawatta, M., Shindo, S., Onaya, T., Sasaki, H., Yamaguchi, T., Chin, M. & Mitsuhasi, H. (1990). Planta Med. 56, 254-258.
- Alex, G., Srinivasan, S., Krishnasamy, V., Suresh, R. V., Iyer, R. & Iyer, P. R. (1993). Acta Cryst. C49, 70-73.
- Basnet, P., Kadota, S., Shimizu, M., Xu, H. X. & Namba, T. (1993). Chem. Pharm. Bull. 41, 1790-1795.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruno, G., Nicolo, F., Rotondo, A., Foti, F., Risitano, F., Grassi, G. & Bilardo, C. (2001). Acta Cryst. C57, 493-494.

- Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.
- Gabor, M. (1981). Arzneim Forsch. (Drug Res.) 31, 442-445.
- Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
- Hasegaida, G. (1967). Japanese Patent 67/24588; Chem. Abstr. (1968), 69, 67221.
- Hii, C. S. T. & Howell, S. L. (1985). J. Endocrinol. 107, 1-8.
- Itz, R. E. & Potzsch, E. (1963). Arzneim Forsch. (Drug Res.) 41, 705-709.
- Nagao, T., Wishio, S., Kato, H. & Takagi, K. (1972). Chem. Pharm. Bull. (Tokyo), 20, 82.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Okuda, J., Miwa, I., Inagaki, K., Horie, T. & Nakayama, M. (1984). Chem. Pharm. Bull. **32**, 767–772.
- Özbey, S., Kendi, E., Ayhan, G. K. & Ertan, R. (1999). Acta Cryst. C55, 678–680.
- Ragunathan, V. & Sulochana, N. (1994). J. Indian Chem. Soc. 71, 705-706.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Thinagar, S., Velmurugan, D., Amalraj, A. & Raghunathan, R. (2000). Cryst. Res. Technol. 35, 979–986.
- Varma, S. D. & Kinoshita, J. H. (1976). Biochem. Pharmacol. 25, 2502–2513.